Math2050A Terml 2016
Tutorial 1, Sept 15

Exercises

1. Let S = [a,b), where a < b. Find inf(S) and sup(S).

2. Let S = {55 : n € N} (0 ¢ N in our definition). Find inf(S) and
sup(S).

3. (p-45 Q4 in our textbook)
Let A C R such that A # () and bounded above. Let b > 0. Define
bA = {ba : a € A}. Show that sup(bA) = bsup(A). What is sup(bA) if
b < 0 and A is bounded below?

4. (p.45 Q7 in our textbook)
let A C R, B C R, be nonempty sets. Show that sup(A + B) =
sup(A) + sup(B) whenever A,B are bounded above and inf(A+ B) =
inf(A) 4+ inf(B) whenever A, B are bounded below.

5. (p.45 Q11 in our textbook)
Let X, Y be nonempty sets and let h : X x Y — R have a bounded
range. Define

f(x) = sup{h(z,y) :y € Y}, g(y) = inf{h(z,y) : v € X}

Show that sup{g(y) :y € Y} <inf{f(z) :z € X}



Solution (Outline)

1. T only find sup(S) here. We claim that sup(S) =b
Proof:
For s € S, s < b. Therefore, b is an upper bound.
We want to show that if u is an upper bound of S, then u > b:
Since u is an upper bound of S, u > s Vs € S = [a,b).
This implies also u > s whenever b > s. This says that u > b. Let’s
see:
Suppose u < b, take @ = "T*b, then b > «a but u < a. Contradicts to
"u > s whenever b > s 7. Therefore, u > b.
By definition of supremum, sup(S) =b
You can also argue that ”if v < b, then v cannot be an upper bound of
S” to conclude that b is the least, as what we do in Q2.
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2. Since g " 2(2£) + 1(55) is taking mean value of 2+ and 5,
we have 757 < o

Therefore, £ is the maximum of S. We have sup(S) =
For the infimum, we claim that inf(S) =0 :

0 is obviously a lower bound of S.

We claim that any postive number cannot be a lower bound of S:

Let € > 0 be any postive number.

Since 2" = (14+1)" = 1+n—|—”(” Dy > ”(” Yyn > 2, then 2 < 2.
By Archimedean property, there 1s N eN such that 1 /N < e/ 2. Take
n=N+1, we have & < 2. = 2 < e. Hence € is not a lower bound

2n = p—1
of S.
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3. bA is a nonempty subset of R bounded above. Hence, sup(bA) exists.
sup(bA) > ba Va € A. Then, ;sup(bA) > a Va € A. Since LHS is a
constant and upper bound of A, we have 3sup(bA) > sup(A), hence
sup(bA) > bsup(A).

One can conclude that for any nonempty subset of R bounded above,
say B, and any postive number, say ¢, we have sup(cB) > csup(B).

Put ¢ = % and B = bA, one can obtain the other inequality sign.

(Check $bA = A)

4. T only do the following: Assume sup(A+ B) = sup(A) + sup(B) when-
ever A,B is bounded above, we show that inf(A + B) = inf(A) +
inf(B) whenever A,B are bounded below. Define —A = {—a:a € A},
then by assumption, sup((—A) + (—=B)) = sup(—A) + sup(—B) and
hence —inf(A+ B) = —inf(A) —inf(B). You need to check that —A
is bounded above, sup(—A) = —inf(A) and —(A+ B) = (—A)+ (—B)



5. Since {h(x,y) : y € Y} and {h(z,y) : © € X} are nonempty bounded
subset of R, respectively for each x € X and y € Y, then both f(x)
and ¢(y) are well-defined.

For each y € Y, g(y) < h(z,y) Vx € X. For each z € X, h(z,y) <
f(z) Vy € Y. Now, let xy € X being fixed, then for each y € Y,
g(y) < h(zo,y) < f(xo) . Since f(xg) is a constant and an upper
bound of {g(y) : y € Y}, we have sup{g(y) : y € Y} < f(x9). This
holds for all 5 in X and LHS is a constant as well as a lower bound of

{f(x) 1z € X}, sosup{g(y) :ye Y} <inf{f(x):ze€ X}.



